
An Ensemble Approach to Building Mercer Kernels
with Prior Information

Ashok. N. Srivastava
Intelligent Systems Division

NASA .4mes Research Center
Moffett Field. CA 94043

Johann Schumann and Bernd Fisc!>er
Research Institute for Advanced Computer Science

NASA Ames Research Center
Moffett Field, CA 94043

Email: ashok@email.arc.nasa.gov Emaii: schumann@riacs.edu. fisch@riacs.edu

.4bsiruct--This paper presents a new methodology for auto-
matic knowledge driven data mining based on the theory of
Mercer Kernels, which are highly nonlinear symmetric positive
definite mappings from the original image space to a very
high, possibly dimensional feature space. we describe
a new method called Mixture Density Mercer Kernels to learn
kernel function directly from data. rather than usinc me-defined

This kernel function says that two points are similar if they are
both more likely given the model 0. Thus, data points lying in
R" which may be far away from each other in the Euclidean
sense may turn out to be 'sirniiar' as measured by this icernei.
w e generalize this notion O f Similarity Using -h'lixtUre Density
Mercer Kernels. ..,.

kernels. These data adiptive kernels can encode prior knowledge
in the kernel using a Bayesian formulation, thus allowing for
physical information to be encoded in the model. Specifically, we
demonstrate the use of the algorithm in situations with extremely
small samples of data. We compare the results with existing
algorithms on data from the Sloan Digital Sky Survey (SDSS) and
demonstrate the method's superior performance against standard
methods. The code for these experiments has been generated with
the AUTOBAY ES tool, which automatically generates efficient and
documented C/C++ code from abstract statistical model specifica-
tions. The core of the system is a schema library which contains
templates for learning and knowledge discovery algorithms like
different versions of EM, or numeric optimization methods
like conjugate gradient methods. The template instantiation is
supported by symbolic-algebraic computations, which allows

~~.

In a recent paper [IS], the notion of Mixture Density Mercer
Kernels was introduced. The idea is to express the distribution
function P(xl) in terms of a full Bayesian formulation of
a density function. The kernel function is created by taking
bootstrap aggregate samples models based on the distribution
function. Thus, for one bootstrap sample, we have:

C

P (X Z P) = . p (C) P (X i l &) (2)
c= 1

Due to the Bayesian formulation, prior distributions can be
placed on the model paramerers for each bootstrap sample.
This allows us to encode domain knowledge into each model.

A U T O B A Y ~ S to find closed-form solutions and, where possible, to
integrate them into the code. The results show that the Mixture

cla5sification in distinguishing high-redshift gaiaxks from low-
redshift galaxies by approximately 16% on test data, bagged
h-ees by approximately 7%, and bagged trees built on a much
larger sample of data by approximately 2%.

"exit;. Merc-,r Reze! desc~ihed here c u q e r f c z s free-S%Sed

I. INTRODUCTION
There is a growing interest in the machine learning and data

niining communities in the field of Mercer Kemels due to their
mathematical properties as well as their use in Support Vector
Classifiers and Regressors. The theory of Mercer Kernels
allows data which may be embedded in a vector space, such as
spectral lines, physical measurements, stock market indices, or
may not arise from a vector space. such as sequences, graphs,
and trees to' be treated using similar mathematics. Work by
Haussler 1131 shows how to map sequences of symbols into
a feature space using kernel similarity measures. In the same
paper. Haussler introduced the idea of a Probabilistic Kernel
function, or P-Kernel that obeys Mercer's conditions (Le., the
kernel function must be symmetric and positive definite) and
is defined as follows:

K(X2,Xj) = F(x,JO)P(x,jO) (1)

-
The kernel function is then composed of the sum of the outer
products of the class membership matrices. Thus. we have:

K(x,.x,) = QT(x2)@(x,>
. M c-

where K represents the a sum of M bootstrap samples. @(xi)
is a composite class membership function, where each member
of the composite is the posterior class distribution for a model.
Thus, for A[models, we have:

@(Xi) cy [S (c = lIxi),P1(c= 2\XZ)> . . . ;

P l (C = ClXZ), Pz(c = lJxz): . . . , P M (C = Cjq)]

In the hard clustering case, where the posterior class distribu-
tion for a given model is a zero-one vector, the (L j) element
of the Mixture Density Mercer Kernel describes how many
times, on average, the 44 models agreed that data points x,
and x3 arose from the same mode in the density function.

As is the case with ensemble methods, the greater the
variability in these models, the better t h e performance of the
overall model. We demonstrate the degree of variability in the
models due to different initial conditions in terms of variations

in the converged likelihood value. This paper elucidates the
idea and demonstrates its feasibility in working with a large
astronomical data set known as the Sloan Digital Sky Survey.

The information required to construct the kernel function
(i.e., the class membership matrix) can be computed by an
application of the EM-algorithm [9] on a suitable training set.
A number of EM-imp1erner:tations is available (e.g., Autoc!ass
[6] , [7], EMMIX [15], MCLUST [l l]) and any of them
could be used. However. in order to insert domain knowledge
into the kernel matrix. the EM-code has to be modified
accordingly; this is time-consuming and error-prone. More-
over, since the choice of a particular prior has consequences
for the quality of the kernel matrix. a certain amount of
experimentation is necessary. However, the exact form of the
prior can also have substantial consequences on the details of
the implementation (e.g.. the form of the M-step or the internal
data structures) which magnifies the implementation problem.
Fortunateiy, the overall structure of the aigorirhm remains the
same and the details can be derived mechanically. Here, we
have applied AUTOBAYES to produce the different variants
of the EM-algorithm. AUTOBAYES [5] , [lo], [12] is a fully
automatic program synthesis system that generates efficient
and documented C/C++ code from abstract statistical model
specifications.

11. NOTATION

.

.

.

.

.

D is the dimension of the data, Ai is the number of data
points x, drawn from a D dimensional space

A d is the number of probabilistic models used in
generating the kernel function.

C is the number of mixture components in each

number of mixture components in each model. However,
here we choose a fixed number for simplicity.

p:cbZbi!istic mode!. !E nrinr;nle “.y.., nne ”..., r a n --.. y e 2 differest

x, is a p x 1 dimensional real column vector that
represents the data sampled from a data set X.

@(x) : RP ++ F is generally a nonlinear mapping to
a high, possibly infinite dimensional, feature space 3.
This mapping operator may be explicitly defined or may
be implicitly defined via a kernel function.

K (x , : x ,) = @ (x t) @ * (x 3) E R is the kernel function
that measures the similarity between data points x, and
xJ. If K is a Mercer kernel, it can be written as the
outer product of the map a. As i and j sweep through
the N data points, it generates an N x N kernel matrix.

pc is the mixture weight for the c th mixture, and 4(,L, c)
is the posterior probability of class membership, i.e ,

. 9 = (p . p. a) is the entire set of parameters that specify
a mixture model.

111. KERNELS BUILT FROM ENSEMBLES

This section overviews two methods that we have created
to build Mercer Kernels directly from data. The first method,
which we call Mixture Density Mercer Kernels (MDMK)
uses an ensemble of probabilistic models to create a Mercer
Kernel. The second method, which we call the Bagged Tree
Kernel (BTK), uses an ensemble of decision trees to create a
kernel matrix. We begin with a brief discussion of the MDMK
followed by a synopsis of the BTK.

A . Mixrure Densin1 Mercer Kernels

The Mixture Density Mercer Kernel function given in (3)
is similar to the Cluster-based Similarity Partitioning Algo-
rithm (CSPA) discussed in [l]. While their implementation
uses hard clustering, it can be extended to the soft cluster-
ing (expectation-maximization) approach described here. An
important difference between this work and previous work,
however, is that we intend to use our kernel function ill

support vector machines for classification and regression. The
modularity of SVMs allow different kernels to be implemented
that model the underlying data generating process in different
ways.

The Mixture Density Mercer Kernel is built using an
ensemble of Bayesian mixture density models. The Bayesian
formulation allows for prior information to be encoded in the
model. Then, rather than computing a maximum-likelihood
estimator, we compute a maximum a posteriori estimator
which includes the likelihood function and the prior. The
greater the heterogeneity of the models used i n generating the
kernel. the more effective the procedure. In the AUTOBAYES
implementation of the procedure, the training data is sampled
Ad times with replacement. These overlapping data sets, com-
bined with I-andom initial conditions for the EM algorithm,
aid in generating a heterogenous ensemble.

In this work, we assume a Gaussian distribution as the
model for each class, with priors expressed in terms of a
conjugate prior for the Gaussian distribution. A conjugate prior
is defined as a family F of probability density functions such
that for every f E F , the posterior f (@(x) also belongs to F.

For a mixture of Gaussians model, priors can be set as
follows [3]. For priors on the means, either a uniform dis-
tribution or a Gaussian distribution can be used. For priors
on the covariance matrices, the Wishart density can be used:
P(Cz(cr,fl: J) cx IE;’lf exp(-atr(E;’J)/2). For priors on
the mixture weights, a Dirichlet distribution can be used:
P(pi1-y) IX n:=,lpy-l, where pi P(c = i) . Maximum
a posteriori estimation is performed by taking the log of the
posterior likelihood of each data point x, given the model 0.
The following function is thus optimized using the Expectation
Maximization [8] for a Gaussian mixture model with priors on
the means only.

For example, the log posterior probability likelihood function.

log(P(p. 5 1 c: a’) x P (c 1 p))

for a model with conjugate priors on the means is thus
compilted as fo:lows. The first step is to marginalize (Le.,
sum out) the latent variable c via the expectation q. However,
to keep this step tractable, it is important to delay the actual
summation as long as possible. We thus introduce the “delayed
summation“ operator z:=lC, cq, which gives us

We can then apply the product rule to decompose the proba-
bilities 2nd then rep!Zce them by the density functions. This
gives us the formidably looking log-likelihood function

Now we can actually execute the delayed summations; the
crucial step is to replace all occurrences of the latent variable

and weighted occurrences. For example, this step simpli-
fies E,, c,-qi log n,”=, p C , into xZl log IT& qj,zPc,. ~ f t e r
further simplifications, we then get the more tractable form:

inside the body of the E,,, i=1 ci-q, ... N by appropriately re-indexed

i=1 ... N

n c

C c N

+A log Pi + 1% Pz q3,2

z = 1 2= 1 J=1

This rather onerous derivation of the likelihood function
(including the ETg-code for the displayed formulae!) was
generated fully automatically by AUTOBAY ES. It is important
to note that although this likelihood function is much more
complicated than the likelihood function for a model with no
priors, it does not change the underlying parametric statistical
description of the data. Thus, the slightly increased computa-
tional burden is only seen at the model building stage, but not
at the model evaluation stage.

The art of choosing priors is one of much study in Bayesian
data analysis. As will be seen later in this work, we choose
priors based on human knowledge about the domain problem
as well as from various visualizations of the data that indicate
where modes should be placed. In the problem of classifying
low and high redshift galaxies, we only include priors on the
means of the Gaussians, rather than on the mixture weights or
the covariance matrices.

B. Bagged Tree Kernels
The Bagged Tree Kernel uses an ensemble of bagged

trees to ’vote’ on the most likely class distribution for a
particular pair of data points x2:xj. Thus, in Equation 3 the
class distribution Pm(cmlxi) is given by a tree function. The
remaining computations are the same as for the MDMK. We
introdxe &is kernel fiindicn BS B riakra! cxterisicz cf 2.1
ensemble of bagged trees into the support vector machines.

IV. AUTOBAYES

AUTOBAYES is a fully automatic program synthesis system
for the data analysis domain. It is implemented in Prolog and
comprises about 80,000 lines of documented code. From the
outside, it looks similar to a compiler: it takes an abstract
problem specification in the form of a statistical model and
translates it into executable code. On the inside? however, it
works quite different: AUTOBAYES first derives a customized
algorithm implementing the model and then transforms it
into optimized C/C++ code implementing the algorithm. The N C D 2 C D N

(Q . 2 - P k : j) + 4i,j 2 + 1% o;,i %,i) algorithm derivation or synthesis process-which distinguishes
i=lj=l k=l 0 k : j i=l j=1 j=1

C N

After dropping the terms in the first line (which are inde-
pendent of the goal variables), and introducing the Lagrange-
multiplier X we get the following final form of the log-

AUTOBAY ES from traditional compilers-relies on the intri-
cate interplay of three key techniques. (i) AUTOBAYES uses
Bayesian networks (BNs) [4], [17] as a compact internal rep-
resentation of the statistical models. BNs provide an efficient
encoding of the joint probability distribution over all variables
and thus enable replacing expensive probabilistic reasoning by
faster graphical reasoning. In particular, they speed up the de-
composition of a problem into statistically independent simpler

model mog as ‘Multivariate Mixture of Gaussians‘;
distributed as a discrete distribution with the relative class

-- const int D : = 5 3 ‘number of bands‘ const frequencies given by the also unknown vector phi. Since
int N as ‘number of data points’ each point must belong to a class, the sum of the probabilities with 1 < N;
const int C as ‘number of classes’ must be equal to one. Finally, we specify the goal inference

with 1 < C; task. maximizing the conditional probability pr (x 1 {phi,
mu, sigma}) with respect to the parameters of interest, with C < < N;

phi, and sigma. This means that we are interested in a
with 1 = sum(-i : = 1 . . C , Dhi(-i)); maximum likelihood estimate (W E) of the model parameters;

adding priors to the model. Note that the model is completely
declarative and does not require the user to prescibe any
a10 rit I C aspects of the estimation program. AuToBAYES is
thusdee to select any clustering algorithm that is applicable;
however. users can force the derivation of specific solutions
(e.%. I;-means instead of EM) via command line parameters.

__-

doubie phi(i..Cj .s ‘class probabilities’

double mu(1. . D , 1. . c) ; double sigma (1. .D, 1. . c) ; aposteriori estimates (u p) can be specified by
output
discrete (phi) ;

-~ data double x(l..D, 1..N); x(-i,-j) - gauss(mu(-i,e? qT,
sigma (-i, c C-j))) ;

max pr(x 1 { p h i , mu, sigma}) {ph i , mu, sigma}; -

c (1. .N) as ‘ latent variable‘ ; c (-) -

Fig. 1 .
are underlined.

AUToB.4YES-specification for Gaussian mixture model. Keywords

subproblems. (ii) AUTOBAY ES uses program sckeinas as the
basic building blocks for the algorithm derivation. Schemas
consist of a parameterized code fragment or template and a
set of constraints which are fomulated as conditions on BNs.
The templates can encapsulate advanced algorithms and data
structures, which lifts the abstraction level of the algorithm
derivation. The constraints allow the network structure to guide
the application of the schemas, which prevents a combinatorial
explosion of the search space. (iii) AUTOBAYES contains a
specialized sJIinbolic subsystem which can find closed-form
solutions for many problems and emerging subproblems. The
combination of these techniques results in a fast synthesis
process which compares in speed to the compilation of the
synthesized code.

Specification Language. A statistical model describes the

problem variable of interest (Le., observation or parameter),
properties and dependencies are specified via probability dis-
tributions and constraints. Figure 1 shows how the standard
Gaussian mixture model with diagonal covariance matrices
can be represented in AUTOBAY ES’S specification language.
The model assumes that the data consists of N points in
D dimensions such that each point belongs to one of C
classes; the first few lines of the specification just declare
these symbolic constants and specify the constraints on them.
However, instead of drawing each point x (1 . . C, - j) (where
. . corresponds to Matlab’s : subrange operator, and -i, - j
are index variables) from a multivariate Gaussian c (- j) with
a full DxD-dimensional covariance matrix, each band -i is
drawn independently from a univariate Gaussian with mean
mu (3 , c (-j)) and standard deviation sigma (-i, c (- j)) .
The unknown distribution parameters can be different for each
class and each band; hence, we declare them as matrices. The
unknown assipment of the points to the distributions (i.e.,
classes) is represented by the latent variable c; since we are
interested in the classification results as well (and not only
the distribution parameters), c is declared as output. c is

properties of the data in 2 k!!~ d e c ! ~ s f ~ e fsshi02: f ~ : P , X ~

Bayesian Networks. A Bayesian network is a directed,
acyclic graph whose nodes represent random variables and
whose edges define probabilistic dependencies between the
random variables. AUTOBAYES uses hybrid BNs with plates
[4] to represent the statistical models internally. Hence, nodes
can represent discrete as well as continuous random variables.
Plates generalize the concept of independent and identically
distributed (i. id.) random variables and “collapse” collections
of independent, co-indexed random variables into graph nodes
representing the non-repeated core structure; this keeps the
graphs compact and the graphical reasoning routines (e.g.,
computing the parents, children, or Markov blanket [I71 of
a node) fast. Distribution and dimension information for the
random variables is attached to the respective nodes and plates.

Program Schernas. A sclzema consists of a parameterized
code fragment (i.e., template) and a set of constraints. The
parameters are instantiated by AUTOBAYES, either directly
or by calling itself recursively with a modified problem.
The constraints determine whether a schema is applicable
?nd ~ C) W ths parameters cry! be ir?stmtia!ed. Constraints are
formulated as conditions on the Bayesian network or directly
on the specified model; they include the maximization goal
as special case. This allows the network structure to guide the
application of the schemas and thus to constrain combinatorial
explosion of the search space, even if a large number of
schemas is available. Schemas are implemented as Prolog-
clauses and search control is thus simply relegated to the
Prolog-interpreter: schemas are tried in their textual order.
This simple approach has not caused problems so far, mainly
because the domain admits a natural layering which can be
used to organize the schema library. The top layer comprises
network decomposition schemas which try to break down
the network into independent subnets, based on independence
theorems for Bayesian networks. These are domain-specific
divide-and-conquer schemas: the emerging subnets are fed
back into the synthesis process and the resulting programs
are composed to achieve a program for the original problem.
AUTOBAY ES is thus able to automatically synthesize larger
programs by composition of different schemas. The next layer
comprises more localized decomposition schemas which work
on products of i.i.d. variables. Their application is also guided

by the network structure but they require more substantial
symbolic computations. The core layer of the library contains
statistical algorithm schemas as for example expectation max-
imization (EM) [9], [141 and k--Means (Le., nearest neighbor
clustering); these generate the skeleton of the program. The
final layer contains standard numeric optimization methods
as for example the Nelder-Mead simplex method or different
conjugate gradient methods.

Symbolic Subsystem. AUTOBAYES relies significantly on
symbolic computations to support schema instantiation and
code optimization. The core part of the symbolic subsystem
implements symbolic-algebraic computations, similar to those
in Mathematica [19]. It is based on the concept of term
rewriting [2] and uses a small but reasonably efficient rewrite
engine. Expression simplification and symbolic differentiation
are implemented as sets of rewrite rules for this rewrite engine.
The basic rules are straightforward; however, the presence of
vectors and matrices introduce a few compiications and require
a careful formalization. In addition, AUTOBAYES contains a
rewrite system which implements a domain-specific refinement
of the standard sign abstraction where numbers are not only
abstracted into pos and neg but also into small (Le.? 15 I < 1)
and large. AUTOBAYES $hen uses a relatively simple symbolic
equation solver built on top of these rewrite systems.

Backend. The code constructed by schema instantiation
and composition is represented in an imperative intermediate
language. This is essentially a "sanitized" subset of C (e.g.,
no pointers), which is extended by a number of domain-
specific constructs like vector and matrix operations, finite
sums, and convergence-loops. Since straightforward schema
application can produce suboptimal code, AUTOBAYES in-
terleaves synthesis and advanced code optimization (cf. [161
for an overview). Schemas can explicitly trigger aggressive
large-scale optimizations like code motion, common sub-
expressic:: e!iziz2tticnl 2nd me?;',eiZz?,ticr! WhiCh CI" t 2 k 2.1-

vantage of information from the model and the synthesis
process. Traditional low-level optimizations like constant prop
agation or loop fusion, however, are left to the compiler. In a
final step, AUTOBAY ES translates the intermediate code into
code tailored for a specific run-time environment. Currently,
AUTOBAYES includes code generators for the Octave and
Matlab environments; it can also produce stand-alone C and
Modula-2 code.

v. EXPERIMENTS AND RESULTS
A. Sloan Digital Sky Survey

Mapping the large scale structure of the universe is nec-
essary in order to better constrain formation scenarios of
structures of all scales (from galaxies to large walls) in the
universe. To this endl measuring the "distances" and x-y
projections on the sky of the largest number of objects possible
is necessary. Thus far it has been difficult to use only broad
band color data to accurately map mass on a broad range
of scales. Astronomers have only been successful in doing
this on small numbers of spectroscopically measured galaxies
(of order lo5). If the errors on what we call "Photometric

Redshifts" can be driven sufficiently low enough we can,
for the first time, use a sample of order 10'. This two
orders of magnitude improvment could have very significant
implications for contemporary theories of the Universe.

SDSS photometry (five broad band filterskolors ugriz) with
calculated accurate photometric redshifts is our goal. For ex-
ample, the SDSS wil! have lo6 (to date = 125: 000 measured)
galaxy redshifts. The next largest survey has approximately
220,000. All of the rest of the redshifts surveys do not add up
to that of the 2dFGRS alone. SDSS photometry will eventually
consist of lo8 objects (53 x lo6 currently). Again, no survey
approaches this quantity of data. Another survey is closest
with 400 million objects, but only two "colors" are measured,
it is spread across entire sky, is a much shallower survey
and consists mostly of stars within our own galaxy, rather
than external galaxies as in the SDSS. The results from the
latest methods used to attack the Photometric Redshifts in the
SOSS range from root mean squared eriors froia C.034 - C.356
and show considerable variability due to sampling. To be able
to map the filamentary structures in the Universe we need a
significant improvement in the root mean square error of the
competing methods.

Fig. 2. Example clustering of one small section of the sky using spectro-
scopically determined redshifts. Crosses indicate field-galaxies, i.e.. those that
are not on filaments. Dots indicate galaxies that are on filamenrs.

B. Choosing Parameters fur the Mixture Model
In a first set of experiments, clustering using AUTOBAYES

generated code was used. Our model is a multi-variate mixture
of Gaussians. Figure 1 shows the entire AUTOBAYES speci-
fication. We ran this model and vaned the desired number
of classes from 3 to 30. Because our EM algorithm uses a
randomized initialization, 10 independent runs were camed
out. Figure 3 shows the log-likelihood for the given parameters
after clustering, the solid line shows its mean. From this graph
it is obvious that the initialization plays an important role as
it strongly influences the result. From this figure one can also
deduce that the best number of clusters for the given data set is

around 12. For larger numbers of clusters. the log-likelihood
does not change much, indicating that the increased model
complexity does not appreciably increase the fit of the model.
For each of the clustering runs, EM needed between 5 and 55
iterations, with mean of 14.2 iterations to converge.

-320000

-3WW

-

Fig. 3. Log-likelihood of a Gaussian mixture model with no priors as a
function of the number of components in the model. Each box corresponds
to OK run. Notice that there is substanuai variation in the terminal value of
the likelihood functlon, which is due to the well-known sensinvity of the EM
algorithm to initial conditions.

The redshift of a galaxy has a strong connection on how
its spectral features are mapped onto the 5 spectral bands
given by the symbols (u , g : ~ , z , and 2). If, for example, a
significant spectral feature of a near galaxy shows up in band
T , the corresponding feature of a similar, but distant galaxy
would be shifted toward the next band, i. Thus, we can assume
that the data points in the different bands are not uncorrelated
(as in the previous model), but that they have cordations
with the neighboring band. This extended model, which has
a band covariance matrix, includes a simple transformation
of the data: the new clustering algorithm gets the original 5
bands, but also the difference signal between adjacent bands:
u - g , g - T , T - i , i - 2. Figure shows the results of this
clustering in terms of the likelihood function. The likelihood
function shows similar variation, and when penalized for the
additional model complexity, also indicates that the correct
number of clusters is around 12.

In the next experiment, a subset of our training data set was
used. It contained all data points, for which the measured red-
shift was larger that 0.3. This data set contains 4530 of the
52744 data points. A similar clustering experiment (with the
above AUTOBAYES model) revealed that the best number of
clusters for distant galaxies is much lower (around 5). Figure 5
illustrates this.

C. Incorporating Prior Knowledge
In order to incorporate prior information in the AUTOBAYES

model, we specified conjugate priors on the mean values p.
The only changes of the specification are the declarations of
the prior parameters 110 and KO, their relationship to the mean,
and a new optimization goal:

-3500W I

Fig. 4. Log-likelihood over number of components (shifted case)

15 20 25
-37000

number 01 6asSe6

Fig. 5 . Log-likelihood over number of components; distant galaxies only

pr({mu, x} I { sigma, phi }) {phi, mu,
sigma}.

The rest of the specification remains unchanged. AUTOBAYES
automatically instantiates the appropriate EM algorithm with
a highly complex log-likelihood function given in Section
2. A visual investigation of the data displayed in Figure 6
indicated that cluster centers need to be placed in spectral
regions which would model high redshift galaxies. We placed
5 clusters, based on the results from the clustering of distant
galaxies only, at the spectroscopic inputs corresponding to
those galaxies. Those clusters had priors associated with them
on the T spectral band, since that has maximum correlation
with the redshift. The remaining input dimensions had no
priors. Furthermore, we did not place priors on the mixture
weights or the covariance matrices. Non-isotropic diagonal
covariance matrices were used in this study. With this model,
we trained 20 mixture models to build the Mixture Density
Mercer Kernel.

10-

Fig. 6. This figure shows a multivariate scatter plot between the bands
(u; 9, T , i, z) and the redshift. Galaxies which are farther away, i.e., those
with higher redshift have lower spectral energy in the band, as expected.
Nearby galaxies have high spectral content. This information was used to set
priors in subsequent models.

D. Evaluation of Results

The Mixture Density Mercer Kernel was built using prob-
abilistic models that included priors as well as those without
priors on a training set of 1500 galaxies and a test set of
5000 galaxies. We first submitted the MDMK along with the
5000 test galaxies to a single CART decision tree module
available in Matlab. The resulting confusion matrix indicated
that only 77% of the distant galaxies (those with a redshift
greater that 0.3) were classified correctly. Thus, the model had
a true positive rate of 77%. Using the Mixture Density Mercer
Kernel. this rate was dramatically improved to approximately
43% nsing the same training and test da.ta. The tree and
the MDMK classified approximately 99% and 97% of the
nearby galaxies correctly. This however, is an easy problem
since nearby galaxies may have high spectral energy content,
whereas distant galaxies never have high spectral content. It
is much more difficult to distinguish far galaxies from those
that are dim and near.

The Mixture Density Mercer Kernel performed significantly
better than the benchmark classifier that we used regardless
of the use of prior information. It turned out that in this
application, prior information only improved the results of the
false negative rate by about 1%, which is within the variation
due to the model uncertainty. Subsequent research into the
specific location of the priors and the shape of the covariance
matrices will be performed.

In order to further test the quality of the SVM based on
Mixture Density Mercer Kernels, we built an ensemble of
20 bagged trees that were built on bootstrap replicates drawn
from the training set. For this scenario, we found that the true
positive rate increased from 77% for the single tree to 86%.
The true negative rate remained the same. However the true
positive rate, although appreciably higher, was still lower than

the result for the Mixture Density Mercer Kernel SVM.
The next experiment that we performed increased the train-

ing population for the bagged trees from the original scenario,
where we were drawing bootstrap samples from 1500 points
to 45,000 points, representing a 30 fold increase in the amount
of training data. This dramatic increase in training data helped
the bagged trees true positive rate, bringiog it to approximately
91%, still 2% lower than the result for the MDMK SVM,
which was built on a data set 30 times smaller in site. Note
that for all experiments described here, we report the best
results out of several runs for all models.

The significant increase in classification accuracy can be
attributed to the structure induced in the kernel matrix by
the mixture modelling process. We computed a kernel matrix
using the procedure outlined in this paper, and evaluated the
matrix entries using a data set that was sorted in increasing
order of redshift. The resulting matrix clearly shows that high
redshift gaiaxies are generaiiy not conhsed with lower iedshift
galaxies by the model. There are two notable exceptions in the
matrix. Confusion would be indicated by large off diagonal
elements in the matrix. Note that we have displayed the kernel
matrix in sorted order only for illustrative purposes. The sup-
port vector machine’s classification accuracy is independent
of the order in which the data is presented; the underlying
mathematics is invariant subject to the permutation of the data
and the corresponding kernel values.

Fig. 7. This figure illustrates the reason that the Mixture Density Mercer
Kernel performs so well on the classification task of identlfying nearby
galaxies from those that are far away. Galaxies that are far away are bunched
together in the lower right hand comer of the matrix.

We ran the Mixture Density Mercer Kernels in a support
vector regression machine in order to directly estimate redshift.
For this problem, regardless of the use of priors, we were
able to obtain a root mean squared error of approximately
0.057 on test data, which is comparable to the error rates of
published methods on large samples. This data shows a great
deal of sample-to-sample variability. A CART regression tree
realized a root mean squared error of approximately 0.045,

which is about 10% better than the MDMK described here.
These results, however, are not surprising since the MDMK is
built to have high performance on classification tasks.

Fig. 8. Companson of the true positive and negative rates and computation
time as a function of the size of the ensemble. The first panel shows the results
of running a single uee 2000 times. The second panel shows the results of
2000 runs of 100 bagged trees. The third panel shows the results of an SVM
built with the RBF kernel. The fourth and fifth panels show the results of
the an SVM built with the MDMK kernel and the BTK kernel. Notice that
the true positive rates are higher for the MDMK kernel at the expense of a
slightly lower true negative rate and higher computation time.

VI. CONCLUSIONS

Our results indicate that for a difficult, real-world classi-
fication task, the Mixture Density Mercer Kernel (MDMK)
performs better 16% better than a decision tree. We have devel-
oped a method to incorporare prior howledge into the mode!
which is a novel approach to learning kernels directly from
data. The MDMK with priors was built with AUTORAYES,
which automatically generates code to model mixture densities
with prior information. The AUTOBAYES system generates
code to model the mixture density based on high-level specifi-
cations, automatically instantiates the associated EM algorithm
schema, performs all necessary optimizations, and generates
the symbolic solution along with the likelihood function.

We plan to further investigate the use of prior information
in the Mixture Density Mercer Kernel framework on other
real world and synthetic problems. The dramatic increase in
classification accuracy that is exhibited here is most likely
due to the way the kernel function is constructed. The use
of prior information may prove to be very useful as new
understandings about the data generating process and the
associate physics arise.

The results also indicate that the Mixture Density Mercer
Kernel can be an excellent representation for classification
problems using very small samples of data. In resource con-
strained environments, where CPU, RAM, or other computa-
tional power is constrained, this kernel may have utility. We

plan to explore this avenue further to see how the MDMK be-
haves under constrained conditions. We also plan to generalize
the MDMK to multiclass problems.

VII. ACKNOWLEDGEMENTS
The authors would like to thank Brett Zane-Ulman, Bill

Macready. Nikunj Oza for valuable discussions and feedback.
This work was supported by a grant from the NASA Intelligent
Systems Intelligent Data Understanding Program.

REFERENCES
[I] Strehl A. and J. Ghosh, Cluster ensembles a knowledge reuse framework

for combining multiple partrtrons, Journal of Machine Learning Research
3 (2002), 583-617.

[2] F r a u Baader and Tobias Nipkow, Term rewriting and all that, Cam-
bridge Univ. Press, Cambridge. 1998.

[3] W. L. Buntine. Operations for learning with graphical models, Journal
of Artificial Intelligence Research 2 (1994), no. 1, 159-225.

[4] Wray L. Buntine, Operations for learning with graphical models, JAIR
2 (1994), 159-225.

[5] Wray L. Buntine, Bemd Fischer, and Thomas Pressburger, Towards
aiironiared synthesis of data mining pi-ograms, Proc. 5th KDD (S a l
Diego, CA) (Surajit Chaudhuri and David Madigan, eds.), ACM Press,

[61 Peter Cheeseman, James Kelly, Matthew Self, John Stutz, Will Taylor,
and Don Freeman, Autoclass: A bavesian classification system, Proc.
5th Intl. Conf Machine Learning (Ann Arbor, Michigan) (John E. Laird.
ed.), Morgan Kaufmann, July 1988, pp. 54-64.

[71 Peter Cheeseman and John Stutz, Bayesian classification (AuroClassJ:
Theory and results, Proc. 2nd KDD (Usama M. Fayyad, Gregory
Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy, eds.),
A M I Press, 1996, pp. 153-180.

[SI A. P. Dempster, M. Laird, N., and D. B. Rubin, Maximum likelihoodfrum
incomplete data via the em algorithm, Journal of the Royal Statistical
Society B (1977).

(91 A. P. Dernuster. N. M. Laird. and Donald B. Rubin. Maximum likelihood

August 15-18 1999, pp. 372-376.

I .

from incomplete data via the EM algorithm (with discussion), I. of the
Royal Statistical Society senes B 39 (1977), 1-38.
Bemd Fischer and Johann Schumann, AuroBaves: A svsrem for gener-
ating data analysis programs from srarisrical models, JFP 13 (2003),
no. 3, 483-508.
Chris Fraley and Adrian E. Raftery, MCLUST: Sofrware for model-based
clusre.riy, drnsinl esrimarion, ~!.vd discrinrinnnt anolwis, Tech. Reporr
415, Department 'of Statistics. University of Washington. October 2002.
Alexander G. Gray, Bemd Fischer, Johann Schumann, and Wray Bun-
tine, Autoniaric derivation of statistical algorithms: The EM fami1.v
and bqyond, NIPS 15 (Suzanna Becker, Sebastian Thrun, and Klaus
Obemayer, eds.), MIT Press, 2003, pp. 689696 .
D. Haussler, Convolution kernels on discrete .ctructures, Tech. report,
University of California Santa Cruz, 1999.
Geoffrey McLachlan and Thriyambakam Knshnan, The EM algorithm
and arensions, Wiley Series in Probability and Statistics, John Wiley
& Sons, New York, 1997.
Geoffrey McLachlan, David Peel, K. E. Basford, and P. Adams, The
EMMIX sofnvare for the fining of mixtures of n o m 1 and r-components,
J. Statistical Software 4 (1999), no. 2.
Steven S. Muchnick, Advanced compiler design and implementation,
Morgan Kaufmann Publishers, San Mateo, CA, USA, 1997.
ludea Pearl, Probabilistic reasoning in irirelligenr systems: Nenvorks
of plausible inference. Morgan Kaufmann Publishers, San Mateo. CA.
USA, 1988.
A. N. Srivastava, Mixture densi? mercer kernels: A method to learn
kenieh directly from data, Proceedings of the 2004 SlAM Data Mining
Conference (2004).
Stephen Wolfram. The marhemarica book. 4th ed., Cambndge Unit,.
Press, Cambridge, UK. 1999.

